CLICK HERE FOR BLOGGER TEMPLATES AND MYSPACE LAYOUTS »

Saturday, September 6, 2008

Octopus


Octopuses are characterized by their eight arms (as distinct from the tentacles found in squid and cuttlefish), usually bearing suction cups. These arms are a type of muscular hydrostat. Unlike most other cephalopods, the majority of octopuses, those in the suborder most commonly known, Incirrina — have almost entirely soft bodies with no internal skeleton. They have do not have a protective outer shell like the nautilus, or any vestige of an internal shell or bones, like cuttlefish or squid. A beak, similar in shape to a parrot's beak, is the only hard part of their body. This enables them to squeeze through very narrow slits between underwater rocks, which is very helpful when they are fleeing from morays or other predatory fish. The octopuses in the less familiar Cirrina suborder have two fins and an internal shell, generally reducing their ability to squeeze into small spaces.
Octopuses have a relatively short life expectancy, and some species live for as little as six months. Larger species, such as the North Pacific Giant Octopus, may live for up to five years under suitable circumstances. However, reproduction is a cause of death: males can only live for a few months after mating, and females die shortly after their eggs hatch. They neglect to eat during the one month period spent taking care of their unhatched eggs, but they don't die of starvation. Endocrine secretions from the two optic glands are the cause of genetically-programmed death, and if these glands are surgically removed, the octopus may live many months beyond reproduction, until she finally starves.
Octopuses have three hearts. Two pump blood through each of the two gills, while the third pumps blood through the body. Octopus blood contains the copper-rich protein hemocyanin for transporting oxygen. Although less efficient under normal conditions than the iron-rich hemoglobin of vertebrates, in cold conditions with low oxygen pressure, hemocyanin oxygen transportation is more efficient than hemoglobin oxygen transportation. The hemocyanin is dissolved in the plasma instead of being bound in red blood cells and gives the blood a blue color. Octopuses draw water into their mantle cavity where it passes through its gills. As mollusks, octopuses have gills that are finely divided and vascularized outgrowths of either the outer or the inner body surface.
Octopuses are highly intelligent, probably more intelligent than any other order of invertebrates. The exact extent of their intelligence and learning capability is much debated among biologists, but maze and problem-solving experiments have shown that they do have both short and long-term memory. Their short lifespans limit the amount they can learn. There has been much speculation to the effect that almost all octopus behaviors are independently learned rather than instinct-based, although this remains largely unproven. They learn almost no behaviors from their parents, with whom young octopuses have very little contact.
An octopus has a highly complex nervous system, only part of which is localized in its brain. Two-thirds of an octopus's neurons are found in the nerve cords of its arms, which have a remarkable amount of autonomy. Octopus arms show a wide variety of complex reflex actions arising on at least three different levels of the nervous system. Some octopuses, such as the Mimic Octopus, will move their arms in ways that emulate the movements of other sea creatures.
In laboratory experiments, octopuses can be readily trained to distinguish between different shapes and patterns. They have been reported to practice observational learning, although the validity of these findings is widely contested on a number of grounds. Octopuses have also been observed in what some have described as play- repeatedly releasing bottles or toys into a circular current in their aquariums and then catching them. Octopuses often break out of their aquariums and sometimes into others in search of food. They have even boarded fishing boats and opened holds to eat crabs.
In some countries, octopuses are on the list of experimental animals on which surgery may not be performed without anesthesia. In the UK, cephalopods such as octopuses are regarded as honorary vertebrates under the Animals Act 1986 and other cruelty to animals legislation, extending to them protections not normally afforded to invertebrates.
A common belief is that when stressed, an octopus may begin to eat its own arms. However, limited research conducted in this area has revealed that the cause of this strange behavior, may be a virus that attacks the octopus's nervous system. This behavior may be more correctly labeled as a neurological disorder.
Three defensive mechanisms are typical of octopuses: ink sacs, camouflage, and autotomising limbs.
This small octopus species will travel with shells that it has collected for protection.Most octopuses can eject a thick blackish ink in a large cloud to aid in escaping from predators. The main colouring agent of the ink is melanin, which is the same chemical that gives humans their hair and skin colour. This ink cloud dulls smell, which is particularly useful for evading predators that are dependent on smell for hunting, such as sharks.
An octopus's camouflage is by certain specialized skin cells which can change the apparent color, opacity, and reflectiveness of the epidermis. Chromatophores contain yellow, orange, red, brown, or black pigments; most species have three of these colors, while some have two or four. Other colour-changing cells are reflective iridophores, and leucophores (white). This colour-changing ability can also be used to communicate with or warn other octopuses. The very venomous blue-ringed octopus becomes bright yellow with blue rings when it is provoked.
When under attack, some octopuses can detach their own limbs, in a similar manner to the way skinks and other lizards detach their tails. The crawling arm serves as a distraction to would-be predators. This ability is also used in mating.
A few species, such as the Mimic Octopus, have a fourth defense mechanism. They can combine their highly flexible bodies with their colour changing ability to (accurately) mimic other, more dangerous animals such as lionfish, sea snakes and eels. They have also been observed changing the texture of their mantle in order to achieve a greater camouflage. The mantle can take on the spiky appearance of seaweed, or the scraggly, bumpy texture of a rock, among other disguises.S, marine lovers, this is just another brief description about marine animals. See you next time!
~~~~~~Megan~~~~~~

0 comments: